The tiered Aubry set for autonomous Lagrangian functions
نویسنده
چکیده
Let L : T M → R be a Tonelli Lagrangian function (with M compact and connected and dim M ≥ 2). The tiered Aubry set (resp. Mañé set) A T (L) (resp. N T (L)) is the union of the Aubry sets (resp. Mañé sets) A(L + λ) (resp. N (L + λ)) for λ closed 1-form. Then : 1. the set N T (L) is closed, connected and if dim H 1 (M) ≥ 2, its intersection with any energy level is connected and chain transitive; 2. for L generic in the Mañé sense, the sets A T (L) and N T (L) have no interior; 3. if the interior of A T (L) is non empty, it contains a dense subset of periodic points. Then, we give an example of an explicit Tonelli Lagrangian function satisfying 2 and an example proving that when M = T 2 , the closure of the tiered Aubry set and the closure of the union of the K.A.M. tori may be different. Résumé Soit L : T M → R un lagrangien de Tonelli (avec M compacte et connexe et dim M ≥ 2). L'ensemble d'Aubry (resp. de Mañé) ´ etagé A T (L) (resp. N T (L)) est la réunion des ensembles d'Aubry (resp. de Mañé) A(L + λ) (resp. N (L + λ)) pour λ 1-forme fermée. On montre : 1. N T (L) est fermé, connexe et si dim H 1 (M) ≥ 2, sa trace avec chaque niveau d'´ energie est connexe et transitive par chaˆıne; 1 2. si L est générique au sens de Mañé, les ensembles A T (L) et N T (L) sont d'intérieur vide; 3. si l'intérieur de A T (L) est non vide, il contient une partie dense de points périodiques. On donne ensuite un exemple explicite satisfaisant 2 et un exemple montrant que si M = T 2 , A T (L) peutêtre différent de l'adhérence de la réunion des tores K.A.M.
منابع مشابه
The tiered Aubry set for autonomous Lagrangian functions
— Let L : TM → R be a Tonelli Lagrangian function (with M compact and connected and dimM > 2). The tiered Aubry set (resp. Mañé set) AT (L) (resp. NT (L)) is the union of the Aubry sets (resp. Mañé sets) A(L + λ) (resp. N (L+ λ)) for λ closed 1-form. Then 1. the set NT (L) is closed, connected and if dimH1(M) > 2, its intersection with any energy level is connected and chain transitive; 2. for ...
متن کاملAubry Sets Vs Mather Sets in Two Degrees of Freedom
Let L be an autonomous Tonelli Lagrangian on a closed manifold of dimension two. Let C be the set of cohomology classes whose Mather set consists of periodic orbits, none of which is a fixed point. Then for almost all c in C, the Aubry set of c equals the Mather set of c.
متن کاملGravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs
Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...
متن کاملAubry-mather Theory for Multi-dimensional Maps
In this paper we study a discrete multi-dimensional version of Aubry-Mather theory. We set this problem as an infinite dimensional linear programming problem and study its relations to Monge-Kantorowich optimal transport. The dual problem turns out to be a discrete analog of the Hamilton-Jacobi equations. As in optimal transport, Monge-Ampére equations also play a role in this problem. We prese...
متن کاملun 2 00 5 Symplectic aspects of Aubry - Mather theory 1
On montre que les ensembles d'Aubry et de Mañé introduits par Mather en dynamique Lagrangienne sont des invariants symplectiques. On introduit pour ceci une barriere dans l'espace des phases. Ceci est aussi l'occasion d'´ ebaucher une théorie d'Aubry-Mather pour des Hamiltoniens non convexes. Abstract : We prove that the Aubry and Mañé sets introduced by Mather in Lagrangian dynamics are symple...
متن کامل